12 Comments

This was excellent, thanks! I was hoping to see a discussion of polysilicon, as it seems like it is at the heart of the solar PV production process. I guess the reports left it off because the raw materials are so plentiful even if processing capacity is quite limited and concentrated. If there’s more coming on that front or another piece that someone could point me to, please let me know.

Expand full comment

I think the critical materials lens is vital to the energy transition. I actually wrote a report for a national lab on exactly this topic in stationary motors, so if someone is interested in the permanent magnet supply chain or reluctance motors I can drop a link

Expand full comment

Will you be discussing the problem of by-product minerals? For instance, there is no such thing as an indium mine. The supply of indium comes from the demand for zinc and copper, if Wikipedia does not mislead me. If you were only extracting the indium from the ore, the price would be uneconomically high. Fortunately, once you have started to extract the zinc or copper, the additional cost of indium extraction is much lower. Iow, you can't prospect for indium; you just have to hope that there is enough zinc/copper demand to float the indium demand. I think that most silver is also a by-product, although "silver mines" are pretty famous. I'm not sure about neodymium.

Expand full comment

As a geologist I have to nitpick about the use of the word mineral. Everything you are talking about are elements except Graphite and most are metals. Minerals are the crystaline compounds that contain these elements like galena (PbS) for leads and chalcopyrite (CuFeS2) for copper (https://opengeology.org/Mineralogy/9-ore-deposits-and-economic-minerals/). Accumulations of these minerals are what geologists are looking for when they are exploring for new mines.

The critical thing to me from your article is how much more is needed of a particular element will be needed under the various scenarios you looked at and how deversifed the sources of these elements are. For example, aluminum and iron (steel) are such widely used metals for so many thing already the extra demand from new energy will be manageable. Whereas graphite, cobalt and lithium could be much more of a challenge. One aspect that may help is that some of these elements have not had much demand and so there has been a very small effort in look for these elements. As demand increases and exploration increases in response there is a good chance lots remains to be found. For copper, gold and silver we have been looking for these metals for millennium whereas cobalt and lithium have only been a focused explortion target for a couple of decades.

Expand full comment

I am super pleased that you are taking a hard look at this crucial environmental justice issue. I do have a question though - are you aware of the research that has been spearheaded by Earthworks on this very subject? It can be found at https://earthworks.org/publications/responsible-minerals-sourcing-for-renewable-energy/. It's much more thorough than the World Bank report you cited and doesn't rely on industry figures. I would love to share more info with you on this, if you'd like.

Expand full comment

The overall message from this paper is that for energy storage, as well as Wind and Solar, there are enough raw materials on earth, mainly Lithium, Aluminum, Copper and all the rest, to produce the storage and the Wind and Solar power needed to power the USA and the rest of the world. This appears to be an easy task to tackle. But, not easier that putting a 62.3 mile by 62.3 mile square of solar P.V. on the USA land to power the country's entire electrical end use energy need per year as I quantified in my last Volt's article comment.

Expand full comment

I just listened to the audio version, so forgive me if I missed it, but I hope your subsequent article on policy includes an analysis of different countries vulnerabilities to supply chain shocks. The stat I have in mind is "large part, this has to do with the expected rise in battery-powered electric vehicles (EVs), which represent 90 percent of battery demand growth". I have to imagine countries whose VMT/GDP$ are much more vulnerable during the shift to EVs. I could be wrong though...

Expand full comment

I found a series of discussions about seabed mining for a number of minerals critical to storage here very informative and relevant: https://www.stitcher.com/show/national-security-law-today/episode/seabed-mining-as-a-national-security-threat-the-laws-of-the-sea-with-matt-gianni-part-1-89675532

Expand full comment